
ScyllarusTM: From Research to Commercial Software
Nariman Habili

NICTA
Canberra Research Laboratory

Tower A, 7 London Circuit
Canberra ACT 2600, Australia

nariman.habili@nicta.com.au

Jeremy Oorloff
NICTA

Canberra Research Laboratory
Tower A, 7 London Circuit

Canberra ACT 2600, Australia
jeremy.oorloff@nicta.com.au

ABSTRACT
In this paper, we describe the development of Scyllarus, a set of
computer vision tools used to process, analyze and visualize
hyperspectral images. Scyllarus is comprised of a MATLAB®
Toolbox, a C++ API and Scyven, an application with a graphical
user interface. The merits of the various tools that were used to
develop the software are discussed as well as the challenges that
were experienced in developing commercial-grade software from
research-grade code. A list of our current and future development
commitments is also provided.

General Terms
Algorithms, Documentation, Performance, Design.

Keywords
Hyperspectral imaging, research, iterative development,
MATLAB®, C++.

1. INTRODUCTION
Scyllarus is a set of computer vision software tools used to
process, analyze and visualize hyperspectral images [1]. Unlike
traditional color images that consist of three bands (red, green and
blue), hyperspectral images consist of 10s or 100s of bands,
covering the visible spectrum, as well as infra-red and beyond.
Therefore, hyperspectral images provide much more information
about a scene than a color image. This leads to an improved
ability to classify materials and objects in a scene based on their
spectral properties.
Scyllarus is comprised of the following tools:

• A MATLAB® Toolbox;
• A C++ API; and
• Scyven (Scyllarus Visualization Environment).

All three tools are available for download from [2]. Scyllarus uses
state-of-the-art image processing algorithms developed by
researchers at NICTA.
The Scyllarus software is developed by members of the Scyllarus
engineering team. This was achieved by translating, porting, or
implementing research-grade code and algorithms, developed by
researchers in computer vision over several years, to commercial
grade software. The development process involves working
collaboratively with researchers in order to understand their
existing algorithms, develop new algorithms and then to
implement them in Scyllarus. The engineers also work closely
with a business team to assist NICTA in finding commercial
opportunities for Scyllarus.
As with any software engineering project, there are a set of
challenges. For Scyllarus, most of the challenges involve
understanding and porting research grade code into commercial
software. This is generally a non-trivial task and involves studying
the original code or algorithm and also reading research papers to
get a good understanding of the algorithm. A challenge during the
initial phase of the development was to select which methods and
algorithms would be required to build the core functionality of
Scyllarus, that is, which components would be required for the
initial commercial product.
The paper is organized as follows. In section 2, we provide a brief
overview of Scyllarus and Scyven. In section 3, we describe the
software development process, the different tools used to develop
the software, and our collaboration with the research and business
teams. Discussion and future direction is provided in section 4
and the paper is concluded in section 5.

2. SCYLLARUS
The Scyllarus software is based on several years of research at
NICTA. The research mainly dealt with hyperspectral imaging for
scene analysis and looked at applications in photography, food
security, defense, earth sciences and health [3].
As mentioned previously, the Scyllarus software is comprised of a
MATLAB® Toolbox, a C++ API and Scyven. The MATLAB®
Toolbox is aimed at academic researchers and is available on a
trial basis for non-commercial use. The C++ API is a commercial
product and is aimed at developers who wish to integrate
hyperspectral imaging capability into their existing or new
application. Scyven is a Graphical User Interface (GUI)
application and is used for processing, analyzing and visualizing
hyperspectral images. It uses the C++ API as its image processing
engine. Scyven is also a commercial product, however it is
currently available free of charge from [2].
Scyven’s GUI was designed with the assistance of a User
eXperience (UX) designer. To design the GUI, we described a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
permissions@acm.org.

ASWEC ’ 15 Vol. II, September 28-October 01, 2015, Adelaide, SA,
Australia Copyright 2015 ACM. ISBN 978-1-4503-3796-
0/15/09...$15.00
DOI: http://dx.doi.org/10.1145/2811681.2817752

mailto:permissions@acm.org

typical use-case to our UX designer. We assumed a user who is a
domain expert in their field (for example in agriculture or
forensics), that has some understanding of hyperspectral imaging.
This was based on our experience with users at the time. As our
user-base grows, we will facilitate direct interaction between the
UX designer and users so that the current GUI can be fine-tuned
or redesigned for a specific group of users. Some users may prefer
a fully automatic system, while others may require direct
interaction with the data generated and the ability to set specific
settings.
The Scyven GUI was designed to be user-friendly, consistent and
intuitive. A screenshot of Scyven in action is shown in Figure 1.
The screenshot depicts an image with ‘similar’ pixels highlighted
in the middle pane, analysis plots on the right pane and current
images on the bottom pane. More information on Scyven and its
user interface is provided in the Scyven User Guide [4].

Figure 1: Scyven screenshot

3. SOFTWARE DEVELOPMENT
The software was developed using an iterative development
process. Each iteration included requirements gathering, design,
coding and testing. We found that an iterative development
process allowed users to make suggestions, evaluate performance,
and clarify requirements, and thereby enhance the quality and
usefulness of the software.
We initially considered adopting a formal software development
methodology, such as SCRUM, but found that a prescriptive
development process was not suitable for us. This is because, all
team collaborators, including researchers, would need to
understand and somewhat adhere to such a methodology.
However, our sprint or software delivery outputs could not be
effectively synchronized to those of researchers. This is because
the length of time that a research project takes is usually less
predictable than that of an engineering project as it involves
algorithm development and experimentation. Also, from time-to-
time, researchers have other priorities and are unable to contribute
to the Scyllarus project.

3.1 Development Pipeline
The Scyllarus engineering team consists of three research
engineers. As mentioned previously, Scyllarus is composed of a
MATLAB® toolbox, a C++ API and Scyven. Each engineer is
responsible for developing and maintaining a tool, however no

engineer has ‘ownership’ over a tool. Any tool can be modified by
any engineer and in practice this happens on a regular basis. As
well as making the team more efficient and agile, it also has the
added benefit of familiarizing all engineers with the code base of
all tools.

The development pipeline of Scyllarus is shown in Figure 2.
Firstly, research grade code, developed by PhD students and
researchers, is ported to Matlab (if applicable), refactored,
optimized and added to the MATLAB® Toolbox. The research
code is mostly written in MATLAB®, but sometimes also in C++.
The MATLAB® code is then ported to C++ and added to the C++
API. The C++ API is used to develop Scyven. All Scyllarus tools
are routinely tested for bug and flaws, which are logged in an
issue tracking tool for assessment.

Figure 2: Scyllarus development pipeline

3.2 Tools
The C++ API and Scyven are developed for both Windows and
Linux. Therefore, most libraries and tools used are cross-platform.
The libraries and tools employed to develop Scyllarus are listed
below:

• Git (via GitHub) [5] is used for source control and issue
tracking. GitHub Enterprise provides a private GitHub
instance that features a fully integrated issue tracker and
other tools such as progress reporting and notification
systems. The team follows a standard ‘Git Flow’
methodology, where the master branch of the Git
repository for each tool is always considered
‘deployable’ and features, enhancements and fixes are
all worked on and tested in branches before being
merged into the master. Team members and internal
users are all encouraged to report issues and suggest
enhancements using the issue tracker, and assign them
to the relevant team member for consideration.

• CMake [6] is a cross-platform build tool. CMake is used
to define the C++ and Scyven software dependencies for
building and linking. CMake can be used to generate
makefiles for several systems, e.g. Visual Studio, or
GCC/Make.

• Qt [7] is a cross-platform applications framework and
was used to develop Scyven. Qt was chosen because of
its use of native controls, well written documentation,
large- user-base, its licensing scheme (with the option of
moving to a commercial license) and its cross-platform
nature.

• The Scyven code base was written in C++ using
Microsoft Visual Studio C++ (MSVS). MSVS was
chosen based on the engineer’s experience at the time
and provides a rich set of tools for developing and
debugging code. However, MSVC, even the latest
version, does not fully comply with the C++11 standard,
and as it was our policy to use C++11 constructs where
ever possible, there are some limitations to our use of
C++11 because of this.

• The C++ API code is built primarily using GCC [8] and
then tested in MSVC for compatibility and amendments
made. Static code analysis using Red Lizards product
Goanna assists in finding potential bugs, memory leaks
and other issues.

• Armadillo [9] and BLAS/LAPACK [10] are used for
algorithm acceleration and optimization. Armadillo
provides a linear algebra library that has access to low
level BLAS/LAPACK routines, allowing for
considerable speedups.

3.3 Collaborations
3.3.1 Researchers
The engineering team works closely with researchers to
understand existing research and algorithms, as well as to discuss
new ideas, methods and concepts, and as such, development
occurs reciprocally. Working effectively with researchers in
computer vision necessitates a background in mathematics and
imaging. Although all three engineers possess engineering
qualifications and have skills that encompass mathematics and
imaging, it is sometimes necessary to engage in self-study to
acquire the additional skills and knowledge.
During the early development phase of Scyllarus, the researchers
were our initial users, and provided us with numerous suggestions
for improvement. Bugs and logic errors were discovered by both
researchers and engineers. We found that this early user
engagement was very useful, especially since we did not have any
external users and could not evaluate the quality of the software in
any independent manner.
Some algorithms developed by the researchers were very slow to
run when implemented in C++ and were either modified,
optimized or redesigned. Some algorithms were also abbreviated
into ‘fast’ versions that produce slightly inferior results but
massively reduced execution times.
Depending on the algorithms modified, different metrics were
used to determine if the results produced by the faster versions
were still correct. In some cases, speedups were gained by
omitting certain parts of the result or making the method less
thorough (e.g., by subsampling the image). The difference
between the results for algorithms with unchanged outputs was
measured using Mean Squared Error (MSE), and verifying if the
faster version was still producing valid results. If the method was
changed or replaced, more subjective measures were used to
determine correctness in consultation with the researchers. In
most cases, these optimizations are ‘toggleable’, and users can
choose to run the ‘full’ version if they wish.

3.3.2 Business Team
The engineering team also interacts closely with a business team
at NICTA to investigate commercial opportunities for Scyllarus.
Through the work of the business developers, new end-users have
been acquired who provide feedback. This feedback has been
valuable as it has allowed us to eliminate bugs and enhance the
software to meet end-user expectations.

4. DISCUSSION AND FUTURE
DEVELOPMENT
Developing commercial software out of research grade code is
always challenging, and we encountered a few issues while
developing our tools. The challenges are discussed below.

4.1.1 Working with Research Code/Algorithms
Taking research code and translating or porting it into a
commercial software package is generally a non-trivial process.
The task involves studying the original code or algorithm, and
potentially also reading theoretical materials (e.g., papers) to get a
good understanding of what the algorithm is trying to accomplish
before beginning to implement it. It is oftentimes the case that
while the researcher who developed the algorithm had the best
intentions when designing their code, the implementation is not
ideal (especially when being re-written in a language such as
C++) and vast improvements and optimizations can be made
through effective redesign and reimplementation of the code.
There are many ways of making the process of translating research
ideas and code into production code more efficient, although there
are pros and cons for each. Researchers do not generally want to
spend too much time performing software engineering activities,
debugging or solving software meta-problems (library issues,
environment setup etc.). This is the primary reason they work in
languages such as MATLAB® on a day to day basis. As an initial
step, researchers could follow a basic style guide for their
programming (even if this were just for MATLAB®) that
contained basic principles to make their code more readable and
understandable. For example, naming variables explicitly can
make a big difference, for instance ‘brightness_threshold’ rather
than ‘alpha’).
Unless researchers have extensive experience in the target
language, it is not necessarily more effective for them to work in it
rather than MATLAB®. In our experience, code that came to us
already written in C++ still required extensive refactoring to be
made useful. Over the course of our project, we have found the
most useful step in speeding up the integration process is to spend
time discussing with the researchers what they intend their
algorithms to do, then with that greater understanding, implement
them quickly and effectively. In a few cases, the first ‘in code’
implementation of an algorithm was done by an engineer after
such a discussion with a researcher.

4.1.2 Prioritizing Tasks and Delivery
In the early stages of the project, we were confronted with a vast
base of research – algorithms, techniques and code – that could
potentially all become a part of Scyllarus. The initial phase of
development constituted selecting which of these components
would be required to build the core functionality of Scyllarus, that
is, which components would be required for the initial
commercial product, and from that stage onward, which features
and components would be subsequently added as enhancements
and additional features. Throughout the development process,
many novel and new features were conceived by the engineering
team and researchers, and important new features were added as
desired. The tools have undergone several releases to date. Some
of these releases were prompted by business engagements (and
included tasks allocated from the business team), while others
were done as a matter of course.

4.1.3 Libraries and Optimization
While developing the C++ API and Scyven, care was taken to
minimize unnecessary effort duplication where possible. Core
libraries including Boost, QT and Armadillo were selected for use
from the beginning due to their suitability, with additional library
additions being carefully considered before their inclusion into
the project. While licensing is a key consideration here, bloat was
also a factor considered. In some cases, when a particular routine
was needed and only offered by a ‘large’ or questionably
supported library, the algorithm was implemented in house.

4.1.4 Testing
Testing of the commercial tools (Scyven and the C++ API) is
imperative to the quality of the released software. While it is
relatively easy to construct and execute unit testing suites for the
C++ API, testing Scyven has proved to be a more difficult task
due to the GUI nature of the software. The team continues to
investigate a best practice solution for this.

4.1.5 Future Development
The current priority is to add capabilities to Scyven for the
processing and analysis of earth observation data. These include
spatial capability so that location-based information can be
collected from satellite and aerial imagery.
Another priority for the team is to modify Scyven’s GUI to make
it suitable for touchscreen monitors and mobile devices, as well as
increasing the ease, usability and intuitiveness. This would allow
Scyven to be used out in the field, for example by forensic officers
taking photos of a crime scene.
There is also work investigating the possibility of running
Scyllarus on lightweight or embedded hardware such that it could
be used in drone-based or other portable applications.

5. CONCLUSIONS
In this paper, we described the development of Scyllarus and the
challenges that we experienced while developing commercial-
grade software from research-grade code. The challenges
included:

• Translating or porting research grade code into
commercial software;

• Prioritizing tasks and delivery to build the core
functionality of Scyllarus;

• Minimizing development effort by using appropriate
open-source libraries and re-implementing some
algorithms if their source was questionable; and

• Testing of Scyven due to the GUI nature of the
software.

The merits of the tools that were used to develop the software are
discussed as well as our experience in working with researchers
and business development managers at NICTA.

6. ACKNOWLEDGEMENTS
We would like to thank Bill Simpson-Young and Ashley Stacey
for reviewing our paper.

7. REFERENCES
[1] Smith, R. 2012. Introduction to Hyperspectral Imaging,

MicroImages Inc., www.microimages.com.
[2] Scyllarus, www.scyllarus.com
[3] Robles-Kelly, A. and Huynh, C. P. 2003. Imaging

Spectroscopy for Scene Analysis. Springer-Verlag, London.
[4] Scyven User Guide,

http://scyllarus.research.nicta.com.au/resource/scyven/Scyve
n_User_Guide_1_0_3.pdf

[5] GitHub, github.com
[6] CMAKE, www.cmake.org
[7] Qt, www.qt.io
[8] GCC, gcc.gnu.org
[9] Armadillo, arma.sourceforge.net
[10] LAPACK/BLAS, netlib.org

http://www.cmake.o/
http://www.qt/

	1. INTRODUCTION
	2. SCYLLARUS
	3. SOFTWARE DEVELOPMENT
	3.1 Development Pipeline
	3.2 Tools
	3.3 Collaborations
	3.3.1 Researchers
	3.3.2 Business Team

	4. DISCUSSION AND FUTURE DEVELOPMENT
	4.1.1 Working with Research Code/Algorithms
	4.1.2 Prioritizing Tasks and Delivery
	4.1.3 Libraries and Optimization
	4.1.4 Testing
	4.1.5 Future Development

	5. CONCLUSIONS
	6. ACKNOWLEDGEMENTS
	7. REFERENCES

